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Abstrset-The paper treats of a theoretical study on steady laminar natural convection along a horizontal 
plate, which is heated with uniform beat flux and facing downwards. The boundary layer equations are 
solved by an approximate integral treatment, based on a concept of minimum boundary layer thickness 
which is derived from the consideration on the time evolution of unsteady flow field. 

While the solutions for an infinite strip and a circular plate are obtained analytically for any Prandtl 
numbers, the solution for a rectangular plate is obtained for the case of Pr -+ a, only. Approximate solutions 
by Galerkin’s method are also obtained for these three plates. The agreement found between the analytical 
and approximate solutions is fairly good, especially in the case of Pr -t co. 

Local Nusselt number Nu.+ is proportional to one-sixth power of modified Grashof number, whereas 
average Nusselt number Nu IS proportional to one-fifth power of Grashof number. The value of Nu/Ru+ 
increases with the increase of Prandtl number up to Pr = 100, becoming almost constant in the range of 
Pr > 100. Besides, it is the smallest for an inllnite strip, and becomes larger toward a rectangular plate and 

a circular plate, 

b, 

G 

L, 

m, n, 
Nux, Nu,.., 

Nu, 

NOMENCLA~ 

one-half of the width of an infinite 
strip, or one-half of one side of a 
rectangular plate, or the radius of 
a circular plate; 
one-half of the other side of a 
rectangular plate; 
one side of the rectangular domain 
shown in Fig. 1; 
constants defined by (19); 
coeffkient = N~/~u~ or ~u/~a~; 
specific heat at constant volume; 
gravitational acceleration; 
Grashof number defined by (32); 
modified Grashof number defined 
by (16); 
aspect ratio of a rectangular 
plate = b/u; 
constants defined by (24); 
local Nusselt number defined by 
(29) ; 
average Nusselt number defined 
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v, 

by (311, (48) and (6% 
static pressure; 
difference between local pressure 
and gravitational potential, de- 
fined by (5); 
Prandtl number; 
heat flux at the plate surface; 
heat flux defined by (14); 
Rayleigh number = Gr Pr; 
moditied Rayleigh number = 
Gr*Pr; 
time; 
temperature; 
temperature difference = T - T, ; 
average temperature difference de- 
fined by (33), (49) and (67); 
velocity components in x-, y- and 
z-direction respectively; 
velocity component defined in 
(12), (55) and (56) respectively; 
rectangular domain shown in Fig. 
1; 
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x, YY 2, coordinates defined in Fig. 1. 

Greek symbols 
local and average heat-transfer 
coefficients defined in (29) and (3 1) 
respectively; 
average volumetric thermal ex- 
pansion coefficient ; 
constants defined by (23) and (47) 
respectively; 
boundary layer thickness; 
normalized boundary-layer thick- 
ness defined by (22); 
independent variable defined by 

(13); 
temperature profile defined in (11); 
thermal diffusivity ; 
thermal conductivity ; 
kinematic viscosity; 
density; 
velocity profile defined in (12); 
local potential defined in (37); 
function defined by (35). 

conditions at x = a; 
conditions at y = c; 
minimum value; 
conditions at the plate surface ; 
conditions at the plate center or 
conditions at y = 0; 
conditions at X = 1; 
conditions in the ambient fluid. 

dimensionless variable; 
unsteady state. 

1. INTRODUCI’ION 

THERE are a good many experimental and 
theoretical studies made on the natural convec- 
tion about a horizontal surface of finite size. 
When the heated surface is facing downwards, 
the flow of fluid within the boundary layer is 
directed toward the edges of the surface, whereas 
the flow is reversed when the surface is facing 

upwards. The characteristics of natural convec- 
tion in these two cases are quite different from 
each other. The subject considered in this paper 
is confined to the problem of laminar boundary 
layer flow along a heated horizontal plate facing 
downwards or that along a cooled plate facing 
upwards. 

Weise [1] experimented on heat transfer 
from heated square plates to air, and recom- 
mended the relation Nu = 047 Raf at Ra + lo7 
for the heat transfer coefficient, which was 
averaged over the whole surface. The measured 
temperature distribution and Schlieren photo- 
graph showed that the thermal boundary layer 
along the lower surface took maximum thick- 
ness at the center and that its thickness decreased 
toward the plate edges. Saunders et al. [2] 
estimated the heat transfer coefficient for a 
heated rectangular plate in air, by measuring 
the refraction of parallel light beam passing 
close to the surface. Kraus [3] measured distri- 
butions of temperature and velocity of air about 
heated square plates, and found that Nusselt 
number, which was averaged over the whole 
surface, was proportioned to one-third power of 
Rayleigh number. 

Fishenden-Saunders [4] recommended an 
experimental curve for the heat transfer from a 
horizontal square plate facing downwards to 
air, and proposed the relation Nu = 021 Ra” in 
the range of 1.3 x lo4 < Ra < 4 x 109. Stewart- 
son [l l] reexamined the data of Fishenden- 
Saunders and proposed the relation Nu = 0614 
Ra*. Birkebak-Abdulkadir [5] measured distri- 
butions of temperature and velocity of water 
about a square plate with uniform surface heat 
flux. The temperature distribution was shown to 
take a similar profile. The velocity distribution 
was caught by photographing the movement of 
plastic particles of neutral density which were 
dispersed in the ambient fluid. Outside the 
boundary layer, the particles moved inward 
towards the direction of centerline, turned up- 
ward, entered the boundary layer from below and 
finally moved sideways toward the plate edges 
following the boundary layer flow. A velocity 
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profile obtained by the electrolysis of teals 
in water was in good agreement with that 
assumed by Singh et al. [lSJ_ The heat transfer 
coefficient was correlated as NU = 0681. Raf in 
the range of 3 x IO* < Ra e I@, where the 
area averaged wall temperature was used as the 
representative one. 

Fujii-Imura [6] experimented on heat transfer 
from inclined plates to water and obtained data 
on the horizontal surface facing downwards as 
a particular case. The boundary layers along the 
test surfaces were restricted two~e~sion~l~. 
The heat transfer coefficient was correlated as 
Nu = 0.44 Ra* in the range of 3 x 105 K Ra -=z 
1.5 x lOlo. When the plates were made to 
inctine a few degrees from the horizontal, the 
relation changed to Nu = CR&. The change 
of heat transfer ~h~acteristi~ mentioned above 
was ascribed to the change of flow pattern; that 
is, the photo~ap~ of flow field, which was 
visualized by the use of floated aluminium 
particles, disclosed the fact that the same flow 
pattern as described by B~keb~-A~u~a~ 
[5j changed to the flow pattern, which originated 
at the lower edge and moved upwards, in con- 
sequence of the slight surface inclination. Aihara 
et at. [7] measured the temperature and velocity 
dist~bution in the two-d~en~on~ boundary 
layer of air about a rectangular plate. The results 
are referred later in section 5. 

Most of the theoretical works concerning 
horizontal plates were based on the boundary 
layer theory approximation. Sugawara-Michi- 
yoshi [S] presented the analysis for an infinite 
strip of finite thickness, replacing its cross 
section for a very thin ellipse and taking the 
component of buoyancy parallel to the heated 
surface as the driving force of convection. The 
heat transfer coefficient was expressed as 
Nu = C Ru*, where C depended on the ratio of 
major to minor radius of the ellipse. The distribu- 
tion of local heat-transfer coefficient was in good 
agreement with We&e’s [l] experimental results, 
provided that the ratio was assumed as equal to 
ten. 

Levy [9] proposed a solution for a heated 

inftite strip facing upwards by the approbate 
integral treatment. The pressure gradient along 
the plate was retained in the equations ofmotion, 
and the boundary layer was assumed to originate 
at the plate edges md grow inward. Wagner [ 101 
solved Levy’s integral equations for the case of 
an infinite strip facing downwards, by assuming 
that the boundary layer thickness is equal to 
zero at the plate edges. Since the pressure terms 
were eliminated from the equations of motion 
by d~erentiating them, the inertia terms did not 
contribute to the solution of Wagner. The heat 
transfer coefficient was expressed as Nu =0*5 Ra*. 

Stewartson [ 111 sought similarity transforma- 
tion of the basic equations and obtained a 
numerical solution for an infinite strip for 
Pr = 0.72, which was expressed as Nu = 0@3 
Rd. As pointed by Gill et al. [12], Yamagata 
[I 33 and Rotem [14], however, Stewartson 
committed sign errors in his calculation and his 
results actually correspond to the case of a 
heated plate facing upward. Yamagata [13] 
derived a solution by the approximate integral 
treatment for an i&mite strip. The boundary- 
layer thickn~ was put equal to zero at the 
point x/a = 1.1, so that its distribution along 
the width might agree with Weise’s [l] experi- 
mental result. The heat transfer coefficient was 
expressed as Nu = O-62 Ru*. Singh et QI. [IS] 
solved Wa~er’s integral equations by Ritz’s 
and/or Gale&in’s approx~ate methods for the 
eases of an infinite strip, a circular and a 
rectangular plate. Nusselt number was proved 
to be proportional to one-fifth power of Rayleigh 
number in each case. 

~lifto~haprn~ [16] introduced the mini- 
mum mechanical energy principle, which was 
established in the open channel hydraulics, in 
order to determine the boundary layer thickness 
at the plate edge. The pressure terms were 
eliminated from the momentum equations by 
integrating them across the boundary layer, and, 
therefore, the contribution of inertia terms were 
retained in the resulting equation. The heat- 
transfer coefficient for an infinite strip was 
expressed as Nu = C Ra*. The thickness of the 
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boundary layer and the eue~~ent c were 
represented graphicafly as a function of Prandtl 
number, ~in~-~~rkeb~ [I?] proposed a solu- 
tion of an infinite strip, ~ntrodu~ng a new corr- 
cept that the bounds layer thinness has 
singular points at the plate edges. This solution 
suggests that the boundary layer thickness takes 
the rn~~~rn~ V&E The b~~da~-la~r thick- 
ness and the heat-~~~~~ coefficient have the 
dependency upon Rayleigb number and Prandtl 
number similar to those of ~~ton~hapma~. 

Chen [Ig] treated the problem for an infinite 
strip as a sta~~tion-poet fiow. The similarity 
tr~~~~at~o~ was sougfpt: and the resuhing 
set of ordinary di~erent~~ equations were 
solved ~~rner~~y_ The rn~rnen~~ equation 
retained the buayancy term along the strip aud 
the heat transfer coefficient was expressed as 
Nu = C&r”. Suriano-Yang [B] solved the 
same problem by a n~~~~ ~n~~e~~ere~~ 
scheme in the Rayleigb number range up to 375 
for two Prandtl number of 09’72 and 10. From 
Table 2 of [19], the heat transfer coefficient can 
be expressed as Nu = C(Pr) Rca” in the range of 
5 < Ra < 339$ where the index n is larger than 
$ and takes different value for two Prandtl 
numbers. The figure of n seems to be too large, 
beoause it is ~o~s~de~ in reference to the 
experimental results on natural convection for 
the other geometrical configuration that the 
figure decrez~es with decrease of Ray~e~~ 
number. 

The literature survey mentioned above reveals 
the foilowing facts. Firstly, ex~~~~ta~ ob- 
servations disclose that a lam&u boundary layer 
is formed along a heated horizomal plate facing 
downwards and that the thickness of the 
bounda~ layer is rn~~rn~ at the plate center 
and deereases with Bowing toward d~w~s~earn~ 
i.e. the plate edges, The temperature distributor 
in the boundary layer is considered to he 
similar except the immediate neighbourhood of 
the plate edge ~~ond~y~ the indioa&n of 
theoretical studies are that sirni~a~t~ sofutioa 
technjque is aot applicable to the present 
problem, This is because the present boundary 

layer does not satisfy the f~d~~tal require- 
ment of sjrn~~~t~ that the boundary layer 
should grow towards the downstream Thus, 
the method of theoretical eualysis may be 
confined to the ~~e~~~ finite d~er~~~ 
scheme or the approximate integral treatment. 
Thirdly, when the approximate integral treat- 
ment is apphed to the present problem, there 
arises an important q~~~~~~ how to put tk 
boundary conditions at the plate edge. Though 
Yamagata [13], Canon-Ch~prn~ [16] and 
~~ngh-~~~e~ [I?] proposed new concepts 
to determine the boundary layer thieknes:ss, they 
did not present any su~~~~t consideration 
upon the ~dequa~. The accuracy of the 
appro~~a~e solution by G~~~k~n’s method is 
not yet estimated. Finally, it may be pointed out 
that the theoretical study in which the com- 
ponent of buoyancy along the plate is introduced 
into moments eq~&ion as the driving force of 
~onve~ti~ gives the expression for average heat 
transfer coefficient as NH = CR&, whereas the 
study in which the pressure gradient along the 
plate is taken into account g&es the e~pr~ss~~n 
as Nu = CR&. 

The ainx of the present papr is to soil these 
questions ana~yti~~y* Here only the case of 
~jfo~ surface heat fhtx has been treatted, 
because the case has been hitherto overiaoked 
by most authors and because the analytical 
treatment is rather rn~a~eab~e” The nurne~~~ 
evahxations are made for an infinite strip, a 
circular plate and a square plate. 

2. THE ~U~~U~ FUR AN ~ SIR* 

The Goordinate system is shown in Fig, 1, 
where a, rw, T,, and TV represem ~a~widt~ of the 
strip, surfa~ ~ern~ra~re~ absent fluid tem- 
perature and surface heat flux r~~~~~~~y. 
When the laminar boundary layer approxima- 
tion is assumed to be possible, the equat,ions of 
the steady state conservation of mass, rnome~t~ 
and energy can be described as follows; 
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Gravity 

Y 
FIG. 1. Coordinate system: in the casa of circuhr plste, 
x-coordinate denotes radial one; in the wse of rectangular 
piate, a-coordinate is t&en pE~dic~~ to the x-y plane. 

au au I ap* a2u 
EI&+u~=---~+vp (3 

0 = - ;z - g@(T - T,), (3) 

i?T c?T d2T 
u~+“‘;i;;=xY@- (41 

where 

P* = P - P&y* (s) 

The bounda~ conditions are 

y = 0; EC = v = 0, -~(~T~~y~~ = q, (61 

y-+ot); ~40, T+T,, p* 3 0. (7) 

Subst~tut~g p*, which is obtained by integrat- 
ing (3) from y to co with respect to y, into (2), we 
obtain 

m 

s tT-TJdy+v$,@) 
Y 

where both boundary layers of temperature and 
velocity are assumed to be of the same thickness 
6. Integrating (4) and (8) from 0 to 6 with respect 
to y under new assumptions &#y = 0 and 
dT/t?y = 0 at y = 6, and eliminating u by using 
(l), we obtain 

d It b 

d 
dx f 

uady = -g/3-$ 
s s 

dy (T - T,)dy 
0 0 Y 

b 

$ 
s 

UfT - T,)dy=T (10) 
0 

By assuming similar profiles of temperature 
and velocity such as 

T - T, = QWh (111 

fd = qPfrl), w 
where 

rt = yfs, (13) 

Q = - cr(dWdtl),/A (14) 

and by introducing dimensionless variables 
such as 

x = x/a, F = ~(G~*Pr)~f~ 
‘- 
z+ = u,a(Gr*Pr)-*/x, (15) 

where 

GP = ~4g~~/v2~ = -(d~/d~)~u4g~Q/v2, (16) 

(9) and (30) are reduced to 

where 

&aa,) = D, (18) 

0 

Since dimensionless boundary layer thickness 
S is considered to be symmetric with respect to 
the axis X = 0, and since we cannot suppose any 
reason why 6 changes abruptly, it is reasonable 
to assume 
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X = 0; d&d% = 0. (20) 

The solution of (17) and (18) subject to con- 
dition (20) is obtained analytically as 

(21) 

where 

d = ~~~~, y = 6/{2 + ml%), (22),(23) 

(dq/‘drl), j 09 dtl 
m= 0 

-(WW, i rp2 drl’ 

n = (de/drifj Wdd~~, 
I 0 1 (24) 
~~~~~~~~~~~~ 

4 

Since the boldly-bays thickness at the plate 
center &, in (21) still remains undetermined, one 
more condition is required. 

2.1 The solution subject to the assumption of 
minimum boundary layer thickness 

An assumption of minimum boundary layer 
thickness is introduced in order to determine 
the boundary layer profile. Substituting 3 = F, 
and d=d,atX = 1 into (21), we obtain 

li, takes the minimum value 6,, at S, = AI,, 
where 

s,, = E;;:/;?J, 

d,, = (2 + mPr)-*‘(6-y). (261 

Substitution of 6, = 6, into (21) yields the 
relation between the local boundary-layer thick- 
ness d = A,,, and Z. 

Differentiation of (21) with respect to R leads 
to 

(27) 

Then it follows 

(28) 

Thus, the assumption of minimum boundary 
layer thickness seems to be equivalent in effect 
to the assumption expressed by (28), as proposed 
by Singh-Birkebak [17] in their determination 
of the bounda~-layer thickness for the infinite 
strip with uniform surface temperature. 

Local Nusseh number Nu, is expressed as 

where 

AT, = T,(x) - T,. (30) 

For the convenience of comparing the present 
result with that for uniform surface t~~rature, 
average Nusselt number Nu is defmed as follows : 

2.2 Physical interpretation of the assumption of 
minimum boundary layer thickness 

Glansdorff-Prigogine [20] have established a 
general evolution criterion valid for the whole 
class of macroscopic systems and derived a 
variational principle, in which the steady state of 
the system is represented in the light of local 
potential. For the present problem, the local 
potential is derived by following the technique 
presented by Schechter-Himmelblau [21]. 

A rectangular domain t: where the boundary 
layer along the heated plate is included as shown 
in Fig. 1, is introduced here. The pertinent 
equations are 

au’ dv’ o 
z+y=, 0) 
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g + 24’ 
ad ,au’ 
-;j,+QF= 

i aP*l 
----iVE,(2) 

ati 

where 

P *’ = P’ - P&Y, (5) 

and the prime denotes unsteady state. Multi- 
plying (1~44~ by apyat, pad/at, padjat and 
(pc,/T,)aZ”/& respectively and then summing 
up the resultant equations, we obtain 

ad 
Xdt+ ( 

ap ad ap*f a”! 
axat +ayat > 

a2d ad 
-pvay2z 

ar pcoxa_ ar 2 d v+ 

Xat+2T*at ay - ( )I 

XdX<O. (341 

When the above integral is calculated in the 
neighbourhood of the steady state (u, v, p*, T), 
functional coetkients of time derivatives in the 
integrand of (36) may be replaced by those values 
at the steady state as a first approximation. Thus 

S~dV=~[S{(~+~)p*‘+4(u~ 

V V 

ad2 

> ( 

2 ad ad 
+?+y -p u QUVay > 

+pgfi(T’_._ TJ%+F 
m 

u’~+u’~ 
ay > 

ar -aTar __- 
’ at - T, ayz at (34) 

where YJ is defined by 

The faction Y’ is of negative quadratic form and, 
therefore always nonpositive. By integrating the 
function y7 over the volume V after partial 
integration, 

J!FdV=[{(g+$)T+;(lig 

V V 

,2 a2d a%’ 
’ && + du’---- 

ataY 

(36)’ 

When the quantity 6, is defmed by 

! 
v” dv = ag/at, (37) 

@ corresponds to the local potential introduced 
by Glansdorff-Prigogine. Since @ can be de- 
creased in time only, the local potential takes on 
a minimum value under a steady state. 

The variation 6cP of local potential Qi, which 
is subject to the solution calculated from (21), 
becomes 

+ pgj(T - T,); f F u’ 
,ar 03 ( 

ar 
,+OF ) 

x~u’+pc, u”T+ur?2_T_xa?T’6T 
( T, ax dy ay’ ) 1 dV 
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Thus 

(38) 

x@+ajdq 7 1 (39) 

where 6 is variational symbol and 8, V, are 
defined as SO/M = 8,‘s and &p/&5 = @/a. Equa- 
tion (39) can be expressed after some rearrange- 
ment such that 

where 

x (8 + @dq. 

I, is a monotonously increasing negative 
function of si,, while I, is a monotonously 
decreasing positive function of 8,. Since the 
relation ~c,,/Tmg/U B 1 holds for ordinary con- 
ditions of the natural convection and the absolute 
values of I, is not so larger than that of I, at the 
neighbourhood of 8,, the sign of variational 
coefftcient expressed by (39)’ is positive, and 
therefore 9 does not take minimum value but 
takes the smallest value at the minimum boun- 
dary layer thickness Jo, Inclusively, the solution 
obtained by the assumption of rnin~~ bound- 
ary layer thickness gives the most plausible ones. 

3. THE SOLUTION FOR A CIRCULAR PLATE 

denoting x-coordinate as a radial co- 
ordinate in Fig. 1, the basii: equations of bound- 
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ary layer flow about the circular plate are ex- a’“+++-= au 
pressed as follows; dy at 

_A.ap*+va”u 
pdx V” @I) 

(41) aw dw dw 1 ap* a2w 
U~+vY&fw;jZ:= ---fvaya’ 

P 82 
(52) 

WI In much the same way as the case of the infinite 
strip, the following similar pro&s are assumed. 

These equations are solved similarly as iu the T - Ib, = QM4 ri = v/4 ill), (13) 
case of the infinite strip with tbe condition of the 
minimum boundary layer thickness as g = ac,,(Jc, r)MIh a = e&P ~~~(~~ 

0% (56) 

(45) where Q is defined by (14). When the following 

where 
d~ensionl~s variables are deftned, 

* 
Z = x/u, Z = z/a, S = ~~~~~~~/~, 

6 
~(1 f i/id%)/2 

Om = 
I 

(57) 
A:; - d?, ' ii = u,,a/(Gr*Pr)+x, l? = u,,a/(Gr*Pr)~x, 

d Im zz (3 f 2m&Q-““6-~ ), (46) the equations of moments and energy inte- 

Y ’ = 6/(3 + 2&V) (47) 
grated across the boundary layer are transformed 
after some r~~~~ernent to 

and m, n are constants defined by (24) 
Local Nusselt number A%, is given in the same 

form as that of (29) and average Nusselt number 

where 

AT, = 2[AT’Wudxla23 

and Gr is de&ted by (32). 

(49) $(%) + -$(52E) = D, 60) 

where A, B and D tsre constants defined by (is). 
It is difficult to obtain the analytical solution of 

4. THE SOLUTION FOR A RECTANMJLAR PLATE 
(%), (59) and (60) for arbitrary Frandtl number. 

The coordinate system is shown in Fig. 1. 
The bask equations are 4.1~~~~~~~~ so~~ti~~~ ~~~~~ PEW&~ nap 

ati a0 dw o 
The left-hand side of (58) and (59) becomes 

z+&jsz=, tN) negligibly small for Pr --+ CO. Substitution of 
ii and ij in these simplified equations into (60) 
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yields the following Poisson’s equation tions which satisfy (60) are introduced here, 

By multiplying (58) and (59) by 
The following boundary conditions may be respectively and summing up 
assumable if the solutions of the infinite strip 
and the circular plate are taken into account; 

equations, 

K = 0; ,%,‘Z = 0, Z = 0; &&‘Z = 0 (62) 

X= klandZ= &L,; $=O, (63) 

where 

(68) 

(69) 

(70) 

J6/Z and S6/2 
the resultant 

L = b/a. (64) 

Equation (61) can be solved analytically as 

a, 

66 Et y 

[ 
(1 - 9) - $ c 

n=O 

By substituting (68), (69) and (70) into (71), 

2(A: + A,A2 + A;) 
Pr 

x (-1) “cosh(n + 1,‘2)azcos(n + 1/2)nx 

(2n + 1)3 cash (n + 1,‘2)7EL n- @5) 

Local Nusselt number NuXz is given in the 
same form as that of (29) and average Nusselt 
number NU is expressed as 

(72) 

Boundary conditions may be assumed as 

x = 0; &!I/&? = 0, z: = 0; &J/Z = 0, (62) 

x= *1; aFpa = T C;O,Z = + L; 

as/a5 = a3. 173) 

Axv = ~~~~*d~d~~ab, (67) The first approximation of the solution of 
00 (72) may be given by 

and Gr is defined by (32). 
S3(X, Z) = a, + a,(1 - X2)+ (L2 - 2’)* , 

a,,a2 2 0 (74) 

4.2 Approximate solution by Galerkin’s method where (x1 and a2 are to satisfy the following 

for arbitrary Prandtl number relation 

In order to apply Galerkin’s method to the 
present problem it is necessary to deduce a j[ F(F)(l - Z2)* (c’- F2)* d.% dz = 0. (75) 

differential equation, which contains only Vari- 
able F, by the appropriate rearrangement of 

By substituting (72) intO (75), 

(58), (59) and (60). Since this is not so accessible, 7x2 L? 

except for the case of Pr + 00, simplified assump 
2 @_+)a~ + 
3 

$ (LaJ2 - - - 
161 + L? 



(76) 

Two more conditions other than (70) and (76) are 
required for determining the values of a,, a2, A, 
and A,. Then, the condition of minimum bound- 
ary layer thickness is employed, that is, a, and 
a2 are determined so as to minimize 8 at the 
plate center 

Thus, 

83(0,0) = a, + Lz,, (77) 

A, = A, = ~/2, a, = 0, 

The boundary layer thickness and the average 
Nusselt number become 

where I$$, 2) denotes a value of Beta function. In 
the case of the square plate these expressions are 
reduced to the following expressions 

x (GrPr)*, IfJOY 
For the purpose of estimating the accuracy of 

the approximate solutions, those for the infinite 

strip and the circular plate are obtained as 
follows; 
for the ix&mite strip, 

for the circular plate, 

F =1: (831 

5. ECU RESULTS AND C~~~~E~~O~ 

Numericalevaluationofthesolutionsobtained 
in the preceding sections is made by assuming 
the following similar profiles of the tempera- 
ture and velocity distribution within the bound- 
ary layer respectively, 

6(ri) = (1 + ?)(I - 9j39 (W 

CPM = rlfl - r113. (W 

I5 

- Ardytiml 

IO -*- Approximate 

8 

Circular plot8 I 
5 , t t I f 

0.001 001 01 , IO 100 1000 m 

FxG. 2. Relation of the bounds layer thicknes3 at the plate 
center 8, vs. Pram&l numbex Pr. 
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These satisfy boundary conditions (6) and (7). 
The experimental results by Aihara et al. [7] 
show that the temperature profile can be 
approximated fairly well by (85) except in the 
neighbourhood of the plate edges, and that the 
velocity profile outside of the maximum velocity 
point does not take any similarity, though the 
maximum velocity and the turning point of 
flow direction are in good agreement with the 
theoretical solution by Singh-Birkebak [17]. 
It is clarified, however, in the case of natural 
convection along a vertical surface [22] that 
the accuracy of these approximate profiles 
does not affect so seriousiy the heat transfer 
coefficient for moderate Prandtl number. 

The values of d~ensionless boundary-layer 
thickness at the plate center 8, and average 
Nusselt number Nu for the infinite strip, the 
circular plate and the square plate are listed in 
Table 1. 

Fw. 3. Distribution of normaliz; boundary layer thickness 
along the infmite strip. 

100. Figure 2 also gives a comparison made on 
the approximate solutions through Galerkin’s 
method and the ~~~i~ ones. The former is 
54 per cent smaller than the latter in the range 

Table 1. Boundary-layer thicknesses at the plate center ii,, and ratios of average Nussett number to one-fifth power of Rayleigh 
number Nu/Ra* 

- 
BD 

Pr 0401 0.01 0.1 0.7 1 10 100 1000 m 

analy. 12.60 8.60 
approx. 11.65 I.95 
analy. 0~1152 0.1824 
approx. 0.1347 0.2135 

analy. 1045 7.13 
approx. 9.53 6.51 
analy. 0~1503 0.2377 
approx. 0.1847 0.2917 

Infinite strip 
5.93 4.56 
5.50 4.30 
0.286 0.396 
0.332 0447 

Circular plate 
4.94 3.88 
455 3.67 
0.371 0.506 
0449 @581 

4.39 3.86 3.76 3.7s 3.74 
4.16 3.80 3.75 3.74 3.74 
0.415 0.498 0522 0527 0.527 
0.463 0518 0.526 0,527 0.527 

3.76 340 3.34 3.34 3.34 
3.59 3.36 3,34 3.34 3.34 
0.528 0.620 0.646 0,651 0.652 
0.597 0645 0651 0.651 0.652 

8 
Om 

NuJRa* 

Square plate 
analy. --- - - - - 3~43 
approx. 10.38 7.09 4-92 3.90 3.79 3.50 3.47 3.46 3.46 
analy. - - - - - -_ - 0.644 
approx. Q1735 02744 o-425 0.563 0.581 0.639 O-648 0.648 0648 

--..~- 

Figure 2 shows the relation of &,, vs. Prfor the of Pr -=z I, approac~g the latter with the 
infinite strip, the circular plate and the square increase of Prandtl number. At the limit of 
plate. The value of 8, decreases gradually with Pr -+ co, the approximate solutions for the 
the increase of Prandtl number up to Pr = 100, infinite strip and the circular plate agree precisely 
becoming almost constant in the range of Pr > with respective analytical ones, and the agree- 



ment for the square plate is within one per cent. 
In Fig 3 is plotted as an example the distri- 

bution of normalixed boundary layer thick- 
ness along the infinite strip A, = &&,,. The 
boundary layer thickness at the plate edge, 
i.e. at X = 1, decreases with the increase of 
Prandtl number, approaching to zero at the 
limit of Pr -t co. The value of. Am through 
Galerkin’s approx~a~ons is independent of 
Prandtl number and in accord with that of 
analytical solution for the case of Pr + 00. 

I (a 1 I&-ii* strip - Analytical 

._..--1-7 
__/--‘- 

______.__-.-.---. 

* ‘0 aG2 04 06 08 
T 

Fro. 4. ~tr~b~ti~n of local Nusselt number. (a) InEmiw 
strih (b) Circuiar plate, (c) square plate. 

Figures 4(a), (b) and (c) show the distribution 
of local Nusselt number along the infinite strip, 
the circular plate and the square plate respec- 
tively. The appro~mate solution generally gives 
a higher local heat-transfer coef&ient than 
analytical one, with their agreement getting 
worse in the neighbourhood of the plate edge. 
The former approaches to the latter with the 
increase of Prandtl number, and at the limit 
of Pr + 00 they agree completely with each 
other for the infinite strip and the circular plate 
and agree very welI for the square plate. The 
tendencies of the present solutions shown in 
Figs. 2, 3 and 4(a) are similar to the results 
obtained by ~on~haprn~ [lq and Singh- 
Birkebak [17] for the case of the infinite strip 
with uniform wall temperature, 

0.8 

- *nalyficat 

0.2 
-.- A_Ximda 

omi 0.01 O-I t lo IO0 IO00 0 

Cr 

Fio. 5. R&ion among averaga Nuswit number Nu, 
Rayleigh number Rn and Prandtl nu~~ber Pr. 

Figure 5 shows the relation of ~u~R~~ vs. Pr, 
The value of iVu/Ra* increases with the increase 
of Prandtl number up to Pr = NM, becoming 
almost constant in the range of Pr > 100, and 
it is higher in the order of the Unite strip, the 
square plate and the circular plate. The approxi- 
mate solution takes a value about lo-20 per cent 
larger than the analytical one in the range of 
Pr < 1, approaching to the latter less than one 
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per cent in the range of Pr > 100. This relation 
between approximate and analytical solution 
seems to belong to a plate of arbitrary shape, 
to which Galerkin’s method is applicable. 

Figure 6 represents a comparison of the 
present solutions with the theoretical ones 
hitherto reported. In the solutions of Wagner 
[lo], Singb et lal. [15], Cl~ton~hapm~ [16] 
and Singh-Birkebak [17] the following profiles 
are used, 

O(V) = (1 - r1)2, (P(r) = r(l - rK (87), (88) 

and in Yamagata’s [ 131 

@(tt) = (I - 1)3, V(V) = ?(I - M3. (89) (86) 

The value of average Nusselt number by Singh- 
Birkebak is obtained by integrating graphically 
the local Nusselt numbers in Fig. 3 of [17]. All 
of these, except the authors’, correspond to the 
case of uniform wall temperature. Figure 6 
also shows the effect of assumed temperature 
and velocity profiles on the average Nusselt 
number. The values of Nu/Ra* obtained by the 
use of the profiles (85), (86) are about 4-7 per cent 
smaller than those by (87), (88) in the range of 

Pr < 1, and about 13 per cent in the range of 
Pr > 100. In Fig. 6 the value of Nu/Ra* for 
the infinite strip by Singh-Birkebak is about 
10 per cent larger than that of the authors’ 
in which the profiles (87), (88) are employed, 
though the assumptions made there are the same 
in principle. This difference seems to be due to 
the surface condition or correspondingly to the 
definition of the average heat transfer coefficient. 

When the effect of assumed temperature and 
velocity profiles and surface conditions on the 
average heat-transfer coefficient are taken into 
account, the theoretical solutions for the infinite 
strip and the square plate, with uniform wall 
temperature and with uniform surface heat flux, 
will be included in the bands exhibited in Fig. 7 
respectively. Experimental results hitherto re- 
ported are also plotted in Fig. 7, where the value 
of Aihara et al. is obtained by integrating 
graphically the local Nusselt numbers in Fig. 4 
of [7], and that of Fishenden-Saunders [4] 
shows the value corrected by Stewartson [ll]. 
The values of Nu/Rd by Fishenden-Saunders, 
Birkebak-Abdulkadir [S] and Aihara et af. 
are about 10 per cent larger than theoretical 
ones. The experimental result by Fujii-Imura 

Present theory - with using (85),(86) _ 
--- with using (t?7),(88) 

(I 1 Wagner, Infinite strip 

(2) Singh et al., a ; Infinite strip, b;Circular plati 

c; Square plate 

(3) Yomagata, Infinite strip 
(4) Clifton-Chapman. Infinite strip 

(5) Singh - Birkebak , Infinite strip 

Cl I I I I I 

I) 001 COI Oi IO 100 

,A_+ 

I IO00 cc 

Pr 

FIG. 6. Comparison among theoretical solutions on average 
Nusselt number. 
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FIG. 7. Comparison between theoretical and experimental 
results on average Nusselt number. 

Experimental 
F-S Fishenden-Saunders Square Uni. temperature 
F-I Fujii-Imura strip Intermediate 
B-A Birkebak-Abdulkadir Square Uni. heat flux 
A Aihara et al. strip Uni. temperature 

Theoretical 
I Square Uni. temperature 
2 Square Uni. heat flux 
3 Strip Uni. temperature 
4 strip Uni. heat flux 

[6] is about 10 per cent smaller than the theoreti- 
cal value. 

In the present theoretical study there remain 
uncertain the real profiles of temperature and 
velocity especially in the immediate neighbour- 
hood of the plate edge, and the ratio of the 
boundary layer of temperature to that of 
velocity, which has more importance for a larger 
Prandtl number, and the range of Rayleigh 
number where the laminar boundary-layer 
approx~ation are applicable. Such unhasty 
must be made clear by further ex~~ental 
studies. 

6. CONCLUSION 

Laminar natural convection from heated 
horizontal plates with uniform surface heat flux 
facing downwards has been studied theoreticaliy 
by an approximate integral treatment. The 
boundary layer equations are transformed into 
ordinary differential equations by integrating 
those across the boundary layer and by assuming 

similar profiles of temperature and velocity, as 
usual. The resulting set of equations are solved 
under the condition of minimum boundary- 
layer thickness. The principal results are sum- 
marized as follows; 
(1) The condition of minimum boundary layer 
thickness, which is derived from the considera- 
tion on the time evolution of unsteady flow field 
by introducing the local potential of Gransdorf- 
Prigogine [2OJ, is equivalent to the condition 
ld&‘dx/ = co at plate edges, as proposed by 
Sag-Birkeb~ 1171. 
(2) Analytical solutions are obtained for the 
infinite strip and the circular plate. Local 
Nusselt numbers are shown in Figs. 4(a) and (b) 
respectively, and average Nusselt numbers in 
Table 1 and Fig. 5. 
(3) At the limit of Pr + co, the governing equa- 
tions are transformed into Poisson’s equation 
and the boundary layer thickness at the plate 
edge tends to zero. Consequently, it is not so 
difficult to obtain analytical solution for a 
plate of arbitrary shape. For example, the 
boundary layer thickness for a rectangular 
plate is expressed by (65), and the local Nusselt 
number on the coordinate axis of a square 
plate is shown in Fig 4(c). 
(4) Local Nusselt numbers obtained by Galerkin’s 
approximate method for the infinite strip, the 
circular plate and the square plate are shown in 
Figs. 4(a), (b) and (c) respectively, and average 
Nusselt numbers in Table 1 and Fig. 5. Generally, 
the approximate solutions give higher heat- 
transfer coefficients than the analytical ones, 
and in the range of Pr > 100 they are in good 
agreement with each other. 
(5) Local Nusselt number Nu,, NH, is propor- 
tional to one-sixth power of modified Grashof 
number, whereas average Nusselt number Nu 
is proportional to one-fifth power of Grashof 
number. The value of Nu/Ru* increases with the 
increase of Prandtl number up to Pr = 100, 
becoming almost constant in the range of Pr > 
100 as shown in Fig. 6. Besides, it is the smallest 
for the infinite strip and becomes larger toward 
the rectangular plate and the circular plate. 

E 
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(6) The average Nusselt number calculated is horizonta1 flat plate by natural convection (in Japanese), 

affected by the surface condition, that is, whether Tru?zs. Japan Sot. Meek. Engrs 21. 651-657 (1955). 
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9. S. LEVY, Integral methods in natural convection flow, 

flux, and also by the assumed temperature and 
Trans. Am. Sot. Mech. Engrs 2X, 515-522 (1955). 

10. C. WAGNER, Discussion on “Integral methods in 

velocity profile. The experimental results hitherto natural convection flow”, Trans. Am. Sot. Mech. Eirgrs 
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UNE ETUDE TREORTQUE DU TRANSFERT THERM~~U~ PAR CGNVECT~ON NATURELLE 
A PARTIR DE SURFACES ~GRIZUNTALES TOURNEES YERS LE BAS AYEC FLUX 

T~ERM~~UE UN~F~RME 
R&mu&--Le texte prksente tine 6tude thhrique de la convection natureile laminaire stationnaire le long 
d’une plaque horizontale tourn& vers le has et chauff& & llux thermique unjforme. Les &quations de la 
couche limite sont r&solues par une m&hode intCgrale approchk, bask sur un concept d’bpaisseur mini- 
mum de la couche limite qui est d&rive de la consideration de revolution dans le remps d’un champ 
d’Ccuulement non stationnaire. 

Tandis que les solutions pour une bande infinie et une plaque circulaire sont obtenues anaIytiquement 
pour tout nombre de Prandtl, Ia solution pour une plaque rectangulaire est obtenue dans le seul cas de 
Pr -+ co. On obtient aussi par la methode de Gaferkin des solutions approch&es pour ces trois plaques. 
L’accord existant entre les solutions analytiques et approchh est bon, spbcialement dam ie cas oti Pr -+ cc. 
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Le nombm IocaI de Nusselt Nnx est pro~rt~onnel a la puis~n~ un sixibme du nombre modif% de 
Grashof, alors que le nombre moyen de Nusseft iVu est proportionnef % la puissance un cioquieme du 
nombre de Grashof. La valeur de ~~/Ru~‘~ crolt avec Ie nombre de Prandtf jusqu’a Pr = 100 et devient 
pratiquement constante darts le domaine de Pr > 100. En outre, elle est la pIus petite pour une bande 

in~nieetdevi~tplus ~randepourdesplaquesrectangulairesetcirculaires. 

FINE THEORETISCHE UNTERSUCHUNG DER NATURLICHEN RGNVEKTION 
BEI HORIZONTALEN FLACHEN MIT ABWARTSGBRICHTETEM, 

GLEICHFtjRMIGEM WARMESTROM 

Z~~~-~ie Arbeit behandelt die theoretiscbe U~tersuchung der station&m, laminam 

natiirlichen Konvektion an einer horixontalen Platte, die mit gleichm~s~~m W&rmestrom beheixt wird 
turd naczh unten zeigt. Die Gre~c~cbtgleich~~n werden t&herungsweise durch eine integraIe 
shantung gel&t, die auf dem Prinxip eines Mi~~s der ~e~~~~htdicke beruht, das aus der 
zeittichen En~cklun~ des ins~tion~r~ ~tr~mun~feIdes abgeleitet ist. Die Liisungen fm einen 
uuendhchen Streifen und eine Kreisplatte erhiih man analytisch fiIr beliebige PrandtbZahlen, die fiir eine 
Rechteckplatte dagegen nur fiir Pr -+ co. Fiir diese drei Platten e&M man au& LiMngen nach Gale&in’s 
Methode. Die ~reiustimmung zwiscben der analytischen und der N~he~~~l~u~ ist ziemiich gut, 
besonders fiir den Fall Fr -+ co. 

Die lokale Nusselt-Zahl ist proportional zur 1/6Potenx der modifizierten Grashof-Zahl, die mittlere 
Nusselt-Zahl daaeaen zur l/S-Potenx der Grashof-Zahl. Der Wert von &u/Ral’s steiat mit der Prandtl- 
Zahl bis zu Pr = iOO an und wird fiir Pr r: 100 fast konstant. Das Verhiltnis ist f& den unendlichen 

Streifen am kleinsten und wird fortschreitend griisser fiir die rechteckige Platte und die Kreisplatte. 


