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Abstract—The paper treats of a theoretical study on steady laminar natural convection along a horizontal
plate, which is heated with uniform heat flux and facing downwards. The boundary layer equations are
solved by an approximate integral treatment, based on a concept of minimum boundary layer thickness
which is derived from the consideration on the time evolution of unsteady flow field.

While the solutions for an infinite strip and a circular plate are obtained analytically for any Prandtl
numbers, the solution for a rectangular plate is obtained for the case of Pr — oo only. Approximate solutions
by Galerkin’s method are also obtained for these three plates. The agreement found between the analytical
and approximate solutions is fairly good, especially in the case of Pr — co.

Local Nusselt number Nu,_ is proportional to one-sixth power of modified Grashof number, whereas
average Nusselt number Nu is proportional to one-fifth power of Grashof number. The value of Nu/Ra*
increases with the increase of Prandtl number up to Pr = 100, becoming almost constant in the range of
Pr > 100. Besides, it is the smallest for an infinite strip, and becomes larger toward a rectangular plate and

a circular plate.

NOMENCLATURE by (31), (48) and (66);
a, one-half of the width of an infinite P, static pressure;
strip, or one-half of one side of a r*, difference between local pressure
rectangular plate, or the radius of and gravitational potential, de-
a circular plate; fined by (5);
b, one-half of the other side of a Pr, Prandtl number;
rectangular plate; q, heat flux at the plate surface;
c, one side of the rectangular domain 0, heat flux defined by (14);
shown in Fig. 1; Ra, Rayleigh number = GrPr;
A,B,D,  constants defined by (19); Ra*, modified Rayleigh number =
C, coefficient = Nu/Rat or Nu/Rat; Gr*Pr;
c, specific heat at constant volume; t, time;
g, gravitational acceleration; T, temperature;
Gr, Grashof number defined by (32); AT, temperature difference = T—T_;
Gr*, modified Grashof number defined AT,, average temperature difference de-
by (16); fined by (33), (49) and (67);
L, aspect ratio of a rectangular u,0,w, velocity components in x-, y- and
plate = b/a; z-direction respectively;
m,n, constants defined by (24); u,u.,,v.,, velocity component defined in
Nu,, Nu,, local Nusselt number defined by (12), (55) and (56) respectively;
(29); Vv, rectangular domain shown in Fig.
Nu, average Nusselt number defined 1;
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X, V, 2, coordinates defined in Fig, 1.

Grecek symbols

o, 0, local and average heat-transfer
coefficients defined in (29) and (31)
respectively;

B, average volumetric thermal ex-
pansion coefficient;

%Y, constants defined by (23) and (47)
respectively;

o, boundary layer thickness;

A, normalized boundary-layer thick-
ness defined by (22);

", independent variable defined by
(13);

0(n), temperature profile defined in (11);

%, thermal diffusivity;

A, thermal conductivity;

v, kinematic viscosity;

0, density;

o), velocity profile defined in (12);

P, local potential defined in (37);

' function defined by (35).

Subscripts

a, conditions at x = a;

¢, conditions at y = c;

m, minimum value;

w, conditions at the plate surface;

0, conditions at the plate center or
conditions at y = 0;

1, conditions at X = 1;

0, conditions in the ambient fluid.

Superscripts

R dimensionless variable;
’ unsteady state.

K

1. INTRODUCTION
THERE are a good many experimental and
theoretical studies made on the natural convec-
tion about a horizontal surface of finite size.
When the heated surface is facing downwards,
the flow of fluid within the boundary layer is
directed toward the edges of the surface, whereas
the flow is reversed when the surface is facing
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upwards. The characteristics of natural convec-
tion in these two cases are quite different from
each other. The subject considered in this paper
is confined to the problem of laminar boundary
layer flow along a heated horizontal plate facing
downwards or that along a cooled plate facing
upwards.

Weise [1] experimented on heat transfer
from heated square plates to air, and recom-
mended the relation Nu = 047 Ra* at Ra = 107
for the heat transfer coefficient, which was
averaged over the whole surface. The measured
temperature distribution and Schlieren photo-
graph showed that the thermal boundary layer
along the lower surface took maximum thick-
ness at the center and that its thickness decreased
toward the plate edges. Saunders et al. [2]
estimated the heat transfer coefficient for a
heated rectangular plate in air, by measuring
the refraction of parallel light beam passing
close to the surface. Kraus [3] measured distri-
butions of temperature and velocity of air about
heated square plates, and found that Nusselt
number, which was averaged over the whole
surface, was proportioned to one-third power of
Rayleigh number.

Fishenden-Saunders [4] recommended an
experimental curve for the heat transfer from a
horizontal square plate facing downwards to
air, and proposed the relation Nu = 0-21 Ra? in
the range of 1-3 x 10* < Ra < 4 x 10°. Stewart-
son [11] reexamined the data of Fishenden—
Saunders and proposed the relation Nu = 0-614
Rat. Birkebak-Abdulkadir [5] measured distri-
butions of temperature and velocity of water
about a square plate with uniform surface heat
flux. The temperature distribution was shown to
take a similar profile. The velocity distribution
was caught by photographing the movement of
plastic particles of neutral density which were
dispersed in the ambient fluid. Outside the
boundary layer, the particles moved inward
towards the direction of centerline, turned up-
ward, entered the boundary layer from below and
finally moved sideways toward the plate edges
following the boundary layer flow. A velocity
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profile obtained by the electrolysis of tellurium
in water was inh good agreement with that
assumed by Singh et al. [15]. The heat transfer
coefficient was correlated as Nu = 0-681 Rat in
the range of 3 x 10® < Ra < 10°, where the
area averaged wall temperature was used as the
representative one.

Fujii-Imura [6] experimented on heat transfer
from inclined plates to water and obtained data
on the horizontal surface facing downwards as
a particular case. The boundary layers along the
test surfaces were restricted two-dimenstonally.
The heat transfer coefficient was correlated as
Nu = 0-44 Ra* in the range of 3 x 10° < Ra <
15 x 10'°, When the plates were made to
incline a few degrees from the horizontal, the
relation changed to Nu = CRa*. The change
of heat transfer characteristics mentioned above
was ascribed to the change of flow pattern; that
is, the photographs of flow field, which was
visualized by the use of floated aluminium
particles, disclosed the fact that the same flow
pattern as described by Birkebak-Abdulkadir
[5] changed to the flow pattern, which originated
at the lower edge and moved upwards, in con-
sequence of the slight surface inclination. Aihara
et al. [7] measured the temperature and velocity
distribution in the two-dimensional boundary
layer of air about a rectangular plate. The resuits
are referred later in section 3.

Most of the theoretical works concerning
horizontal plates were based on the boundary
layer theory approximation. Sugawara-Michi-
yoshi [8] presented the analysis for an infinite
strip of finite thickness, replacing its cross
section for a very thin ellipse and taking the
component of buoyancy parallel to the heated
surface as the driving force of convection. The
heat transfer coefficient was expressed as
Nu = CRa*, where C depended on the ratio of
major to minor radius of the ellipse. The distribu-
tion of local heat-transfer coefficient was in good
agreement with Weise’s [ 1] experimental results,
provided that the ratio was assumed as equal to
ten.

Levy [9] proposed a solution for a heated
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infinite strip facing upwards by the approximate
integral treatment. The pressure gradient along
the plate was retained in the equations of motion,
and the boundary layer was assumed to originate
at the plate edges and grow inward. Wagner [10]
solved Levy’s integral equations for the case of
an infinite strip facing downwards, by assuming
that the boundary layer thickness is equal to
zero at the plate edges. Since the pressure terms
were eliminated from the equations of motion
by differentiating them, the inertia terms did not
contribute to the solution of Wagner. The heat
transfer coefficient was expressed as Nu=0-5 Ra?.

Stewartson [ 11] sought similarity transforma-
tion of the basic equations and obtained a
numerical solution for an infinite strip for
Pr = 072, which was expressed as Nu = 0-603
Rat. As pointed by Gill et al. [12], Yamagata
[13] and Rotem [14], however, Stewartson
committed sign errors in his calculation and his
results actually correspond to the case of a
heated plate facing upward. Yamagata [13]
derived a solution by the approximate integral
treatment for an infinite strip. The boundary-
layer thickness was put equal to zero at the
point x/a = 1'1, so that its distribution along
the width might agree with Weise’s [1] experi-
mental result. The heat transfer coefficient was
expressed as Nu = 0:62 Rat, Singh et al. [15]
solved Wagner’s integral equations by Ritz'’s
and/or Galerkin’s approximate methods for the
cases of an infinite strip, a circular and a
rectangular plate. Nusselt number was proved
to be proportional to one-fifth power of Rayleigh
number in each case.

Clifton-Chapman [16] introduced the mini-
mum mechanical energy principle, which was
established in the open channel hydraulics, in
order to determine the boundary layer thickness
at the plate edge. The pressure terms were
eliminated from the momentum equations by
integrating them across the boundary layer, and,
therefore, the contribution of inertia terms were
retained in the resulting equation. The heat-
transfer coefficient for an infinite strip was
expressed as Nu = C Ra®. The thickness of the
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boundary layer and the coefficient C were
represented graphically as a function of Prandil
number, Singh-Birkebak [17] proposed a solu-
tion of an infinite strip, introducing a new con-
cept that the boundary layer thickness has
singular points at the plate edges. This solution
suggests that the boundary layer thickness takes
the minimum value. The boundary-layer thick-
ness and the heat-transfer coefficient have the
dependency upon Rayleigh number and Prandtl
number similar to those of Clifton—-Chapman,

Chen [18] treated the problem for an infinite
strip as a stagnation-point flow. The similarity
transformation was sought and the resulting
set of ordinary differential equations were
solved numerically. The momentum equation
retained the buoyancy term along the strip and
the heat transfer coefficient was expressed as
Nu = CRa*. Suriano-Yang [19] solved the
same problem by a numerical finite-difference
scheme in the Rayleigh number range up to 37-5
for two Prandtl number of 0:72 and 10. From
Table 1 of [19], the heat transfer coefficient can
be expressed as Nu = C(Pr) Ra” in the range of
5 < Ra < 375, where the index » is larger than
3 and takes different value for two Prandtl
numbers. The figure of # seems to be too large,
because it is comsidered in reference to the
experimental results on natural convection for
the other geometrical configuration that the
figure decreases with decrease of Rayleigh
number,

The literature survey mentioned above reveals
the following facts. Firstly, experimental ob-
servations disclose that a laminar boundary layer
is formed along a heated horizontal plate facing
downwards and that the thickness of the
boundary layer is maximum ai the plate center
and decreases with flowing toward downstream,
ie. the plate edges. The temperature distribution
in the boundary layer is considered to be
similar except the immediate neighbourhood of
the plate edge. Secondly, the indication of
theoretical studies are that similarity solution
technique is not applicable to the present
problem. This is because the present boundary

layer does not satisfy the fundamental require-
ment of similarity that the boundary layer
should grow towards the downstream. Thus,
the method of theoretical analysis may be
confined to the numerical finite difference
scheme or the approximate integral treatment.
Thirdly, when the approximate integral treat-
ment 15 applied to the present problem, there
arises an important question how to put the
boundary conditions at the plate edge. Though
Yamagata [13], Clifton~Chapman [16] and
Singh-Birkebak [17] proposed new concépts
to determine the boundary layer thickness, they
did not present any sufficient consideration
upon the adequacy. The accuracy of the
approximate solution by Galerkin’s method is
not yet estimated. Finally, it may be pointed out
that the theoretical study in which the com-
ponent of buovancy along the plate is introduced
into momentum equation as the driving force of
convection gives the expression for average heat
transfer coefficient as Nu = C Ra?, whereas the
study in which the pressure gradient along the
plate is taken into account gives the expression
as Nu = C Rat.

The aim of the present paper is to solve these
questions analytically. Here only the case of
uniform surface heat flux has been treated,
because the case has been hitherto overlooked
by most authors and because the analytical
freatment is rather manageable. The numerical
evaluations are made for an infinite strip, a
circular plate and a square plate.

2. THE SOLUTION FOR AN INFINITE STRIP

The coordinate system is shown in Fig 1,
wherea, T, T, and ¢ represent half width of the
strip, surface temperature, ambient fluid tem-
perature and surface heat flux respectively.
When the laminar boundary layer approxima-
tion is assumed to be possible, the equations of
the steady state conservation of mass, momentum
and energy can be described as follows;
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Fic. 1. Coordinate system: in the case of circular plate,
x-coordinate denotes radial one; in the case of rectangular
plate, z-coordinate is taken perpendicularly to the x-y plane.

du  Ou 18p* %
ué;‘i-bg—y—“‘;g*f‘\?é?, (2}
1 op*
0= ~-———gB(T-T), 3
oDy gB( ) &)
oT oT 0*T
tl‘é'; + U‘a}— = %-5;2", 4)
where
p*=p— .9y &)
The boundary conditions are
y=0; u=v=0 -AU0T/0y),=q (6}
y 00! u—0, T->T, p*-0(7)

Substituting p*, which is obtained by integrat-
ing (3) from y to co with respect to y, into (2), we
obtain

ou ou 0 { &u
Uz + b3, = gﬁb-;f(T —T)dy + s ®
¥

where both boundary layers of temperature and
velocity are assumed to be of the same thickness
é. Integrating (4) and (8) from 0 to § with respect
to y under new assumptions ou/dy =0 and
8T/2y = 0 at y = §, and eliminating v by using
(1), we obtain

3 5 é

d {, d

EEJ“ dy—~gﬁd—£fdyf(T—Tw)dy
0 0 y

(10)

&
d xg
de"‘gT =8y =7
Q

By assuming similar profiles of temperature
and velocity such as

T~ T, = Q0(n)3s, (11)
u = u ofn), (12)
where
n=y/s, 13)
= — q(d0/dn)e/A, (14)

and by introducing dimensionless variables
such as

% =1x/a, &= 8Gr*Prit/a,
= udGr*Pr) ¥x,  (15)
where
Gr* = a*gPq/v*h = —(d6/dn),a*gBQN?,  (16)
(9) and (10) are reduced to
1d o, 48 a
Fr'a‘x::(aui) == -Aﬁ_x: - B—g', (17)
d e\ _
gx-;(ﬁ i)=D, (18)
where
} 1
dn{od
A=—20 5 , ! , = e/,
~(d6/dn),  ¢* dn [o2dn
4]
D= :_1(&9@1?_}9_. (19)
§ 6 dn
0

Since dimensionless boundary layer thickness
8 is considered to be symmetric with respect to
the axis X = 0, and since we cannot suppose any
reason why & changes abruptly, it is reasonable
to assume
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£ =0;dd/dx = 0. (20)

The solution of (17) and (18) subject to con-
dition (20) is obtained analytically as

6 1 x?
- A =n1+ 56,

4 =88, v==6/2+ mPr), (22),(23)

e29]

where

1
(de/dn), § B¢ dn

m= T ,
~(@0/dn), | o* dn

n= (dB/dn)"' (dfp/dn)o _
! dn j vdn. f b¢ dn

Since the boundary-layer thickness at the plate
center &, in (21) still remains undetermined, one
more condition is required.

4

2.1 The solution subject to the assumption of
minimum boundary layer thickness
An assumption of minimum boundary layer
thickness is introduced in order to determine
the boundary layer profile. Substituting & = 3,
and 4= A at X = 1 into (21), we obtain

1 1
5 = <1+ )W_ 7%

J, takes the minimum value ., at 4, = 4,,,
where

5 = n(l + 1/mpPr) |?
om A}im - A?m |
4, =@+ mPr)~1E=n (26

Substitution of 6, = J,, into (21) yields the
relation between the local boundary-layer thick-
ness 4 = 4, and X.

Differentiation of (21) with respect to x leads

to
ié’_”_ o _Z_n_(l + _1._4) MWD_CAM —
dx &5, mPr) y4?, ~ 643

(25)

@7
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Then it follows
(dAn/dR)__,, = Foo. (28)

Thus, the assumption of minimum boundary
layer thickness seems to be equivalent in effect
to the assumption expressed by (28), as proposed
by Singh-Birkebak [17] in their determination
of the boundary-layer thickness for the infinite
strip with uniform surface temperature.

Local Nusselt number Nu_ is expressed as

N = =a1i~ 50,,. (Grepry -
(29)
where
AT, =T (x) ~ (30)

For the convenience of comparing the present
result with that for uniform surface temperature,
average Nusselt number Nu is defined as follows:

- ¥

=[ (cje/dn)o] (GrPrP.
SOm .fAm dx

i)

4
A AT A

Ny =

(31
where

Gr = a®gBAT, %, AT, = [AT, dx/a. (32),(33)
0

2.2 Physical interpretation of the assumption of
minimum boundary layer thickness

Glansdorff-Prigogine [20] have established a
general evolution criterion valid for the whole
class of macroscopic systems and derived a
variational principle, in which the steady state of
the system is represented in the light of local
potential. For the present problem, the local
potential is derived by following the technique
presented by Schechter-Himmelblau [21].

A rectangular domain ¥, where the boundary
layer along the heated plate is included as shown
in Fig. 1, is introduced here. The pertinent
equations are

ouw ov -0,

ol 3y (1y
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ou o o l ap*' 82u’

FrIr " dy y2 @
o 1 op*
. A ; 3 £
%= o BT -T) O
ﬁ_fl_"; + 0T o ,oT vaT' @
ox ox by ay*’

where
pY =0 — p9y )

and the prime denotes unsteady state. Multi-
plying (1y—(4) by Op'/ot, pouw'jot, por’/ot and
(pc,/T,)0T'/0t tespectively and then summing
up the resultant equations, we obtain

Y= ow +§y_’ ?P_*’+ au’ +o L ou

ox  dy) ét “ox oy
O (oprow | aprovY O ou
ot \oxa "Tayoa) P
6T’+ orT
Tg0 dox ay
LT oT  pex 3°T' T
a8 T, &P ot

where ¥ is defined by

ou\? w\?*  pc, [8T\?
r--Lo(G) o) R (F) ]
3%
The function ¥ is of negative quadratic form and,

therefore always nonpositive. By integrating the
function ¥ over the volume V after partial

integration,
aw\op*  pf
* 5;)7 M 5(“

o'
Jro- i
v v
62 +2 ,aZur
+v a0y ) p(u +u’vFay>

o'
+ pgB(T' — Tw)-—

(34)

62 urz
0tdx

2,/
.2 0%u

otox

opvow  oprovy  pvd(ow)?
ox Ot ay ot 2 ot\ dy
, pe,( o T
+ pgB(T" — ) +T( e 6y)
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6T’ pex & (OT\?
* ot T T, at(a )}d”

(e
xdx <0 (36)

When the above integral is calculated in the
neighbourhood of the steady state (i, v, p*, T),
functional coefficients of time derivatives in the
integrand of (36) may be replaced by those values
at the steady state as a first approximation. Thus

0 ou v\ ., . pf ou?
] “"—atU G ) 50
\ 4
+Ugl_‘_’i — uzélil_.{.uv?.!‘_l
dy p 0x dy

op* op* pv (w2
+(a u+6y )+2 3y + pgp

ou' ou pex 0T dT'\=¢
dy ot T, dy ot

(o]

pe,( OT oT pcx

x (T =T =" <ax+ 6y)T’+2T
aT'\? i ou , pex
() Jore [ (g + 5

x .‘EZT«) }dx:l <0. (36
/=0

When the quantity @ is defined by
{(,w dV = o9/dt, (37

@ corresponds to the local potential introduced
by Glansdorff~Prigogine. Since & can be de-
creased in time only, the local potential takes on
a minimum value under a steady state.

The variation 8® of local potential @, which
is subject to the solution calculated from (21),
becomes

o ou\  op* '
6P = e o e ——— gy —o
fv[{” (“ % ay) T TP 6y2}

pe, T oT 62‘1’
Su' + v g ol
X ou + (ua +va 6281' dv

o
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f ou o\ _ ,  pex
H{""(‘ara;)“ T
x (91 - Q)ST} ) :|dx. (38)
ay 03} y=0
Thus

1
oP _aps , do
(86>6'=6 =D j((p dn ¢ dn
i} 0

Q

x? 2x dé

1 1 a
- ngﬁQ%D(S @ —2p)[0dn dng

1

x dé anz | G0
xgdxdx pv*D JW(QD 2¢)dn
0
a 2 1 da
2 gy 052 a
x4 22 {f(e 0+ 25
)

n
x fqodr])(0+ @“)dnfffiiéd
1]

1 1
de - d?%e
—ana;(O—%— G)J'L(pdndn —~aJdn
[ [\]

xw+®@}

where & is variational symbol and 6, ¢ are
defined as 86/66 = 6/6 and 8¢/65 = @/6. Equa-
tion (39) can be expressed after some rearrange-
ment such that

3¢ prRa*Pr
55/, .

(39)

1,0, 9,6,)

+

ﬁi 1,(6, ¢, 0)} (39)
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where

D31

1

y J‘)?_z(l ZJ?dS)d)_C 2
s\~ 55—
) 5 5 dx .“)‘Pd’?

1 1
dz T2
x f@‘;’@— 2¢)dnj%di, (40)
0 O

i

7
D ds
I, =—(d6/dn)§£(6¢ + Zd—ygigodn)(ﬂ%-é)dn

x Efg X D 9
5dx X~ e/ )2 ( +9)
14
1 1 2
f 4%
dndy — —— | &9
x (6 + 8)dn.

I, is a monotonously increasing negative
function of 6, while I, is a monotonously
decreasing positive function of &, Since the
relation gc /T, gfA > 1 holds for ordinary con-
ditions of the natural convection and the absolute
values of I, is not so larger than that of I, at the
neighbourhood of 6., the sign of variational
coefficient expressed by (39) is positive, and
therefore @ does not take minimum value but
takes the smallest value at the minimum boun-
dary layer thickness &, Inclusively, the solution
obtained by the assumption of minimum bound-
ary layer thickness gives the most plausible ones.

3. THE SOLUTION FOR A CIRCULAR PLATE
By denoting x-coordinate as a radial co-
ordinate in Fig. 1, the basic equations of bound-
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ary layer flow about the circular plate are ex-
pressed as follows;

%+2_§-+%:0, @1)
ug—:ic+vgg= -%%€;+v§;—?, 42)
0= — T -pr-T) @)
u%—f—v%aﬁ%}. {44

These equations are solved similarly as in the
case of the infinite strip with the condition of the
minimum boundary layer thickness as

cas (L L\ E
B = B = 2(1 * mPr) e @
where
5 (1l + 1/mPr)2 1
4, =3+ 2mPr)" YTy (46)
y = 6/(3 + 2mPr) 47

and m, n are constants defined by (24).

Local Nusselt number Nu_is given in the same
form as that of (29) and average Nusselt number
Nu is expressed as

— %
Nu= 2 o [ (a/dm, jl (GrPrt, (48)
av g

28, g x4,d
where
AT =2 g AT, x dx/a?, 49)
and Gr is defined by (32).

4. THE SOLUTION FOR A RECTANGULAR PLATE

The coordinate system is shown in Fig. 1.

The basic equations are
ou ov

o oy

ow

+"5'z"=0’ (50)
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LI P R X L P
ox ' oy oz pox oy
LR et
0= -%égf—gﬂ(rmm (53)
u%+v%§+w%§ws¢%§ (54)

In much the same way as the case of the infinite
strip, the following similar profiles are assumed.

T-T, =06, n=y/s (11),(13)

u=u (x200), v=n0,x720MH)
(55),(56)

where Q is defined by (14). When the following
dimensionless variables are defined,

X =x/a, Z=z/a, &= Gr*Prit/a, 2
i =u_a/(Gr*Pr)*x, ©= vxza/(Gr*Pr)*x,}

the equations of momentum and energy inte-
grated across the boundary layer are transformed
after some rearrangement to

a5°

18 b 8 o _ i
T-’;{% (%) + 'é"_z:(suw)} =-4 Fra Yg’ (58)
110 . _ 0
o5° w
@ ey O g

where 4, B and D are constants defined by (19).
It is difficult to obtain the analytical solution of
(58), (59) and (60) for arbitrary Prandt! number.

4.1 Analytical solution for infinite Prandt] number

The left-hand side of (58) and (59) becomes
negligibly small for Pr— co. Substitution of
i and W in these simplified equations into (60)
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yields the following Poisson’s equation

a6°  08° _

a5 0o° 2(649/6»1)2 840/611)0
ax2 " 9y

§0¢dn§dn§96n

= —M. (61)

The following boundary conditions may be
assumable if the solutions of the infinite strip
and the circular plate are taken into account;
X=0; 06/0x=0,z=10; 856/0Z = 0(62)
X=+landz= +L; §=0, (63)
where
L = b/a. (64)

Equation (61) can be solved analytically as

5 =-[(1 ~ -2)—22

n=0
(—1)*cosh{n + 1/2)mzcos(n + 1/2ymx 65)
(2n + 1)* cosh (n + 1/2)nL
Local Nusselt number Nu_, is given in the

same form as that of (29) and average Nusselt
number Nu is expressed as

—(06/0 *
Nu =2~ [ (06 ")OL] (GrPr)*, (66)
av {[édxdz
00
where
ab
AT, = [ [ AT, dxdz/ab, 67
00
and Gr is defined by (32).

4.2 Approximate solution by Galerkin’s method
for arbitrary Prandtl number

In order to apply Galerkin’s method to the
present problem it is necessary to deduce a
differential equation, which contains only vari-
able 8, by the appropriate rearrangement of
(58), (59) and (60). Since this is not so accessible,
except for the case of Pr — oo, simplified assump-
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tions which satisfy (60} are introduced here,

8% = A,X, (68)
5*W = A,z (69)
A +A4,=D. (70)

By multiplying (58) and (59) by 8%/% and 8%/Z
respectively and summing up the resultant
equations,

6 6
W{S—E(S’Z) ~——--(5uw )+ §~i(5uw)
s 6 A33 36 A%3

+5——(5‘2)} (5_8-5:+5 65)
ax 0z

-3(55 55_“’). (71)
X zZ

By substituting (68), (69) and (70) into (71),

242 + A4, + 4) ; 1
{ Py + BD; &> — Br

{(Az + A Az)xa

(B 5w
X 0x Z 0z

3 3
6 + (4,4, + Az)zﬁ}

) = F@H=0. (72

Boundary conditions may be assumed as
X=0; 08/0x =0,Z=0; 088/0Z = 0,(62)

X=+1; 08/0x% = F o0,z = +L;
08/0Z = F o0. 73)
The first approximation of the solution of
{72) may be given by
3(%,27) = a, + a,(1 — IH(Z — 22,
a,a, >0 (74)

where a, and a, are to satisfy the foilowing
relation

1L
g(-)[ F(&3 (1 — ) (IH - 22 dx dz = 0.(75)
By substituting (72) into (75),

n? I?

2 , |37 2
3 (Laza; + {35.“ (La)) — 1+
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A+ A A, +422 BD

x( 4 [N

16, ., {(2D* 8A*+ A A, + A2
+35la) ‘{(57'*9 A

1 4BD L2
Pr

Two more conditions other than (70) and (76} are
required for determining the values of 2, a,, 4,
and A4,. Then, the condition of minimum bound-
ary layer thickness is employed, that is, a, and
a, are determined so as to minimize § at the
plate center

X 2 (Laz) - (76)

3*0,0) = a, + La,. (N
Thus,

A, =A4,=D/2, a =0,

_{ 1 (501 SBO\- (78)
LTV TE\Z AP T4 A

The boundary layer thickness and the average
Nusselt number become
5BD t
4 4

- 1 5D* 1
8%.2) = {z‘:ﬁ(ﬁﬁ*

x (1 =3 - 2% (719
Nt = ~4dojdn)o|*{ E (5D* 1
“VUBGED [ W+B\ZAPr
5BD\] %
+ Z—:‘I——)} (G?‘P?‘)*, (80)

where B(, J) denotes a value of Beta function. In
the case of the square plate these expressions are
reduced to the following expressions

3%, 2) = (55—2-3 + 5@-)* (1 - 5t

4 APr 8 A4
x (1 - 233, {79y
_ {—4dg/dm\E/5D* 1  SBD\*
N"*{ 76D ) @APr T84
x (GrPr)t. 80y

For the purpose of estimating the accuracy of
the approximate solutions, those for the infinite

strip and the circular plate are obtained as
follows;
for the infinite strip,

5D*1  BD o
8 = (—Z—‘Z-F-*' > (1 — X%, (81)
_ {—=2d0/dn),|*{5D* 1  BD\?
Vo (e Gant
x (GrPr)t, (82)
for the circular plate,
3D*1 _1BD\ .
5= (4 A Pr+§?) =%y &)

Nu = {"E(dg/d’?)a}g
N LR
4 A Pr

5. NUMERICAL RESULTS AND CONSIDERATIONS

Numerical evaluation of thesolutions obtained
in the preceding sections is made by assuming
the following similar profiles of the tempera-
ture and velocity distribution within the bound-
ary layer respectively,

1 BD\~#
57) (GrPRE.  (84)

6 =1+ - 7P, 85%)
@ln) = n(l — n)>. (86)
s T T T T T ="\
s A natytical
10 s Approximate

Infinite strip —

§
fse Square plote -
4 .
Circular plate
2 i i i i i i A\
oool 001 Ol i 0 100 000

Fi6. 2. Relation of the boundary layer thickness at the plate
center 5, vs. Prandtl number Pr.
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These satisfy boundary conditions (6) and (7).
The experimental results by Aihara et al. [7]
show that the temperature profile can be
approximated fairly well by (85) except in the
neighbourhood of the plate edges, and that the
velocity profile outside of the maximum velocity
point does not take any similarity, though the
maximum velocity and the turning point of
flow direction are in good agreement with the
theoretical solution by Singh-Birkebak [17].
It is clarified, however, in the case of natural
convection along a vertical surface [22] that
the accuracy of these approximate profiles
does not affect so seriously the heat trapsfer
coefficient for moderate Prandtl number.

The values of dimensionless boundary-layer
thickness at the plate center J, and average
Nusselt number Nu for the infinite strip, the
circular plate and the square plate are listed in
Table 1.
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06~

B/ Bom

A=

o2+ ~

i ] { .
0 02 04 (o) o8 [Re)

FiG. 3. Distribution of normaiize:l boundary layer thickness
along the infinite strip.

100. Figure 2 also gives a comparison made on

the approximate solutions through Galerkin’s

method and the analytical ones. The former is

5-8 per cent smaller than the latter in the range

Table 1. Boundary-layer thicknesses at the plate center 8, and ratios of average Nusselt number to one-fifth power of Rayleigh

number Nu/Ra*
Pr 0-001 0-01 01 07 1 10 100 1000 0
{nfinite strip
5 analy. 12-60 8-60 593 4-56 439 3-86 376 375 374
Om approx.  11-65 795 5-50 4-30 416 380 375 374 374
Nu/Ra analy. 01152 01824 0286 0-396 0415 0-498 0-522 0-527 0527
approx. 01347 02135 0332 0-447 0-463 0-518 0-526 0527 0-527
Circular plate
3 analy. 1045 713 494 388 3-76 340 334 3-34 334
Om approx. 953 651 4:55 367 359 336 334 334 334
Nu/Ra* analy. 01503 02377 0371 0-506 0-528 0-620 0-646 0651 0-652
approx. 01847 02917 0449 0-581 0-597 0-645 0-651 0-651 0-652
Square plate
3 analy. — — —— — — — — — 343
om approx. 1038 709 492 390 379 3-50 347 346 3-46
Nu/Rat analy. — —_ — — — — — - 0-644
approx. 01735 02744 0425 0563 0-581 0-639 0-648 0-648 0-648

Figure 2 shows the relation of §,,,, vs. Pr for the
infinite strip, the circular plate and the square
plate. The value of &, decreases gradually with
the increase of Prandtl number up to Pr = 100,
becoming almost constant in the range of Pr >

of Pr < 1, approaching the latter with the
increase of Prandtl number. At the limit of
Pr — oo, the approximate solutions for the
infinite strip and the circular plate agree precisely
with respective analytical ones, and the agree-
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ment for the square plate is within one per cent.
In Fig. 3 is plotted as an example the distri-
bution of normalized boundary layer thick-
ness along the infinite strip 4, = §/5,,. The
boundary layer thickness at the plate edge,
ie at X = 1, decreases with the increase of
Prandtl number, approaching to zero at the
limit of Pr— . The value of 4 through
Galerkin’s approximations is independent of
Prandtl number and in accord with that of
analytical solution for the case of Pr — 0.
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Fic. 4. Distribution of local Nusselt number. (a) Infinite
strip, (b} Circular plate, (c) Square plate.
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Figures 4(a), (b) and (c) show the distribution
of local Nusselt number along the infinite strip,
the circular plate and the square plate respec-
tively. The approximate solution generally gives
a higher local heat-transfer coefficient than
analytical one, with their agreement getting
worse in the neighbourhood of the plate edge.
The former approaches to the latter with the
increase of Prandtl number, and at the limit
of Pr— oo they agree completely with each
other for the infinite strip and the circular plate
and agree very well for the square plate. The
tendencies of the present solutions shown in
Figs. 2, 3 and 4{a) are similar to the results
obtained by Clifton—Chapman [16] and Singh-
Birkebak [17] for the case of the infinite strip
with uniform wall temperature.

-0 Y T Y T T Y

Circulor plote

04f

Nu ! Ra'’®

—— Anaiytico
Approximole

—

o2

i i i i i
ol i o] 100 1000 L)
Pr

Fi6. 5. Relation among average Nusselt number Nu,
Rayleigh number Ra and Prandtl number Pr.

Figure 5 shows the relation of Nu/Rat vs. Pr.
The value of Nu/Rat increases with the increase
of Prandt! number up to Pr = 100, becoming
almost constant in the range of Pr > 100, and
it is higher in the order of the infinite strip, the
square plate and the circular plate. The approxi-
mate solution takes a value about 1020 per cent
larger than the analytical one in the range of
Pr < 1, approaching to the latter less than one
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per cent in the range of Pr > 100. This relation
between approximate and analytical solution
seems to belong to a plate of arbitrary shape,
to which Galerkin’s method is applicable.

Figure 6 represents a comparison of the
present solutions with the theoretical ones
hitherto reported. In the solutions of Wagner
[10], Singh et al. [15], Clifton—Chapman [16]
and Singb-Birkebak [17] the following profiles
are used,

B0 = (1 — ), o) =n(l —n),  (87),(8%)
and in Yamagata’s [13]
00 = (1 — P, o) =nl—n? (89),(86)

The value of average Nusselt number by Singh—
Birkebak is obtained by integrating graphically
the local Nusselt numbers in Fig. 3 of [17]. All
of these, except the authors’, correspond to the
case of uniform wall temperature. Figure 6
also shows the effect of assumed temperature
and velocity profiles on the average Nusselt
number. The values of Nu/Ra! obtained by the
use of the profiles (85), (86) are about 4-7 per cent
smaller than those by (87), (88) in the range of
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Pr < 1, and about 13 per cent in the range of
Pr > 100. In Fig. 6 the value of Nu/Ra* for
the infinite strip by Singh-Birkebak is about
10 per cent larger than that of the authors
in which the profiles (87), (88) are employed,
though the assumptions made there are the same
in principle. This difference seems to be due to
the surface condition or correspondingly to the
definition of the average heat transfer coefficient.

When the effect of assumed temperature and
velocity profiles and surface conditions on the
average heat-transfer coefficient are taken into
account, the theoretical solutions for the infinite
strip and the square plate, with uniform wall
temperature and with uniform surface heat flux,
will be included in the bands exhibited in Fig. 7
respectively. Experimental results hitherto re-
ported are also plotted in Fig. 7, where the value
of Aihara et al is obtained by integrating
graphically the local Nusselt numbers in Fig, 4
of [7], and that of Fishenden-Saunders [4]
shows the value corrected by Stewartson [11].
The values of Nu/Ra* by Fishenden—Saunders,
Birkebak-Abdulkadir [S] and Aihara et al
are about 10 per cent larger than theoretical
ones. The experimental result by Fujii-Imura

Py /Ra'®

(2) Singh

{5) Singh
4 i

1

Present theory

(1) Wagner, Infinite strip

(3) Yamagata, Infinite strip
(4) Clifton —Chapman, Infinite strip

o ——— — - -

Infinite strip
—  with using (85),(86) |
with using (€7}, (88)

et al., a; Infinite strip, b;Circular ploté’]
¢; Square plate

— Birkebak , Tnfinite strip
L | 5

-0t

Cl
0001 Ot t

10 100 1000
Pr

o]

FI1G. 6. Comparison among theoretical solutions on average
Nusselt number.
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Nu s Ra'?

Pr

FiG. 7. Comparison between theoretical and experimental
results on average Nusselt number.

Experimental

F-S Fishenden-Saunders Square  Uni. temperature
F-I  Fujii-Imura Strip Intermediate
B-A Birkebak-Abdulkadir Square  Uni. heat flux

A Aihara et al. Strip Uni. temperature

Theoretical

1 Square  Uni. temperature
2 Square  Uni. heat flux

3 Strip Uni. temperature
4 Strip Uni. heat flux

[6] is about 10 per cent smaller than the theoreti-
cal value.

In the present theoretical study there remain
uncertain the real profiles of temperature and
velocity especially in the immediate neighbour-
hood of the plate edge, and the ratio of the
boundary layer of temperature to that of
velocity, which has more importance for a larger
Prandtl number, and the range of Rayleigh
number where the laminar boundary-layer
approximation are applicable. Such uncertainty
must be made clear by further experimental
studies.

6. CONCLUSION

Laminar natural convection from heated
horizontal plates with uniform surface heat flux
facing downwards has been studied theoretically
by an approximate integral treatment. The
boundary layer equations are transformed into
ordinary differential equations by integrating
those across the boundary layer and by assuming
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similar profiles of temperature and velocity, as
usual. The resulting set of equations are solved
under the condition of minimum boundary-
layer thickness. The principal results are sum-
marized as follows;

(1) The condition of minimum boundary layer
thickness, which is derived from the considera-
tion on the time evolution of unsteady flow field
by introducing the local potential of Gransdorf-
Prigogine [20], is equivalent to the condition
|dé/dx| =co at plate edges, as proposed by
Singh-Birkebak [17].

(2) Analytical solutions are obtained for the
infinite strip and the circular plate. Local
Nusselt numbers are shown in Figs. 4(a) and (b)
respectively, and average Nusselt numbers in
Table 1 and Fig. 5.

(3) At the limit of Pr — oo, the governing equa-
tions are transformed into Poisson’s equation
and the boundary layer thickness at the plate
edge tends to zero. Consequently, it is not so
difficult to obtain analytical solution for a
plate of arbitrary shape. For example, the
boundary layer thickness for a rectangular
plate is expressed by (65), and the local Nusselt
number on the coordinate axis of a square
plate is shown in Fig. 4(c).

(4) Local Nusselt numbers obtained by Galerkin’s
approximate method for the infinite strip, the
circular plate and the square plate are shown in
Figs. 4(a), (b) and (c) respectively, and average
Nusselt numbers in Table 1 and Fig. 5. Generally,
the approximate solutions give higher heat-
transfer coefficients than the analytical ones,
and in the range of Pr > 100 they are in good
agreement with each other.

(5) Local Nusselt number Nu_, Nu_, is propor-
tional to one-sixth power of modified Grashof
number, whereas average Nusselt number Nu
is proportional to one-fifth power of Grashof
number. The value of Nu/Ra? increases with the
increase of Prandtl number up to Pr = 100,
becoming almost constant in the range of Pr >
100 as shown in Fig. 6. Besides, it is the smallest
for the infinite strip and becomes larger toward
the rectangular plate and the circular plate.
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{6) The average Nusselt number calculated is
affected by the surface condition, that is, whether
it is in uniform temperature or in uniform heat
flux, and also by the assumed temperature and
velocity profile. The experimental results hitherto
reported are generally somewhat larger than
theoretical ones. A more elaborate experimental
study is required.
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UNE ETUDE THEORIQUE DU TRANSFERT THERMIQUE PAR CONVECTION NATURELLE
A PARTIR DE SURFACES HORIZONTALES TOURNEES VERS LE BAS AVEC FLUX
THERMIQUE UNIFORME
Résamé—1e texte présente une étude théorigue de 1a convection naturelle laminaire stationnaire le long
d’une plaque horizontale tournée vers le bas et chauffée 4 flux thermique uniforme. Les équations de la
couche limite sont résolues par une méthode intégrale approchée, basée sur un concept d’épaisseur mini-
mum de la couche limite qui est dérive de la considération de I'évolution dans le temps d’un champ

d’écoulement non stationnaire.

Tandis que les solutions pour une bande infinie et une plaque circulaire sont obtenues analytiquement
pour tout nombre de Prandt], la solution pour une plaque rectangulaire est obtenue dans le seul cas de
Pr —» c0. On obtient aussi par la méthode de Galerkin des solutions approchées pour ces trois plaques.
L’accord existant entre les solutions analytiques et approchées est bon, spécialement dans le cas ol Pr — .,
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Le nombre local de Nusselt Nu_est proportionnel 4 la puissance un sixiéme du nombre modifi¢ de
Grashof, alors que le nombre moyen de Nusselt Nu est proportionnel & la puissance un cinquieme du
nombre de Grashof, La valeur de Nu/Ra'?® croit avec le nombre de Prandtl jusqu'd Pr = 100 et devient
pratiquement constante dans le domaine de Pr > 100. En outre, elle est la plus petite pour une bande

infinie et devient plus grande pour des plaques rectangulaires et circulaires.

EINE THEORETISCHE UNTERSUCHUNG DER NATURLICHEN KONVEKTION
BEI HORIZONTALEN FLACHEN MIT ABWARTSGERICHTETEM,
GLEICHFORMIGEM WARMESTROM

Zusammenfassung—Die Arbeit behandelt die theoretische Untersuchung der stationdiren, laminaren
natiirlichen Konvektion an einer horizontalen Platte, die mit gleichmissigem Wirmestrom beheizt wird
und nach unten zeigt. Die Grenzschichigleichungen werden naherungsweise durch eine integrale
Behandlung gelost, die auf dem Prinzip eines Minimums der Grenzschichtdicke beruht, das aus der
zeitlichen Entwicklung des instationdiren Strémungsfeldes abgeleitet ist. Die Losungen fiir einen
unendlichen Streifen und eine Kreisplatte erhilt man analytisch filr beliebige Prandtl-Zahlen, die fiir eine
Rechteckplatte dagegen nur fiir Pr — oo, Fiir diese drei Platten erhiit man auch Ldsungen nach Galerkin's
Methode. Die Ubercinstimmung zwischen der analytischen und der Niherungslosung ist ziemlich gut,
besonders fiir den Fall Pr — .

Die lokale Nusselt-Zahl ist proportional zur 1/6-Potenz der modifizierten Grashof-Zahl, die mittlere
Nusselt-Zahl dagegen zur 1/5-Potenz der Grashof-Zahl. Der Wert von Nu/Ra'/*® steigt mit der Prandtl-
Zahl bis zu Pr = 100 an und wird fiir Pr == 100 fast konstant. Das Verhaltnis ist fiir den unendlichen

Streifen am kleinsten und wird fortschreitend grésser fiir die rechteckige Platte und die Kreisplatte.

TEOPETHYECKOE NCCAEJOBAHWE NMEPEHOCA TEIUIA ECTECTBEHHON
HOHBEKRUWEN OT OBPAIIEHHBIX BHU3 IN'OPUBOHTAJRHBIX
NOBEPXHOCTEN 11PYU OJHOPOJITHOM TENJIOBOM HOTOKE

Annoramma—TeopeTH4ecKN HCCASAYETCA CTANMOHAPHOEe JNAMHHADHOE TeueHne (npu ecrecT-
BeHHO KOHBEKIHMHA) BIONL TOPUBOHTANbHOR 0OpameHHOM NOBEPXHOCTHI0 BHUZ ILUTACTHHML,
HarpesaeMofl OJHOPOAHKIM TEINIOBHM TOTOKOM. YDaBHEHIA NOTPAHNYHOLO CJIOH PelanTCH
€ TIOMON[bI0 IPAONIKEHHOTO NHTET PANIPHOTO METON3, OCHOBAHHOTO HA HOHATAN MEHMMATLHOM
TOJIMMHE HOTPAHUYHOTO CHHOS, KOTOPAA ONPEEeASTCH U3 BPEMEHHO] SBOMOLUN HeCTANORAp-
HOTO NOJA NOTOKA.

B 10 Bpems Kak 1A GeCKOHEUHON HONOCH M KPYTON NIACTHHH aHAINTHUECKHE DeNIeHUA
noxydensl A mobHX 3HaveHuil ducna IlpampaTaA, To IS NPAMOYrONBHOW [JIACTHHE!
pelueHye MOJYYeHO TONBRO NPH Fr— oo, JLnA BeeX 9THX TpeX MIACTHH HANNEHH MpuGin-
JeHHEIE DEUIeHNs ¢ noMombio Mertoxa [lanépruma. ARanuTHYeCKOe W TIPHBILKEHHOE
pemenus Xaw0T Xopoilitee coBHagenue ocobenHo npu Pr - o,

Jlowanproe umciao Hyccenpra Nw, HPOHOPIMOHANBHO MOTMQUIMPOBAHHOMY WHCITY
Ppacroga s crenenu 1/6, a cpemee wiesro Hycceamsra Nu nponopnuosansho uneay I'pacroda
B eremenn 1/5. 3uavenme Nu/Ro''® ysenuuwmBaeTcA ¢ yReIWYeHWEeM SHAYeHUS uycHa
Hpangraa no Pr = 100, a moroM cTaHOBHTCA mouTH mocTosHHEM npu Pr > 100. Kpome
TOTQ, 3TO OTHOLIGHUE ABIACTCA HAUMEHBIIHMM IAA GecHOHEeYHOH NIACTHHL ¥ VBEeINYHBAETCH

JJIA MPAMOYIONBHON H KpYroBo#l NIacTHH. '
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